
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597274

PEROXIDASE, HEMATIN, AND PEGYLATED-HEMATIN CATALYZED
VINYL POLYMERIZATIONS IN WATER
Amarjit Singha; Sucharita Royb; Lynne Samuelsonc; Ferdinando Brunoc; Ramaswamy Nagarajanb;
Jayant Kumarb; Vijay Johnd; David L. Kaplana

a Department of Chemical & Biological Engineering and Bioengineering Center, Tufts University,
Medford, Massachusetts, U.S.A. b Department of Chemistry, Center for Advanced Materials, University
of Massachusetts—Lowell, Lowell, Massachusetts, U.S.A. c Natick Soldier Center, Natick,
Massachusetts, U.S.A. d Department of Chemical Engineering, Tulane University, New Orleans,
Louisiana, U.S.A.

Online publication date: 30 November 2001

To cite this Article Singh, Amarjit , Roy, Sucharita , Samuelson, Lynne , Bruno, Ferdinando , Nagarajan, Ramaswamy ,
Kumar, Jayant , John, Vijay and Kaplan, David L.(2001) 'PEROXIDASE, HEMATIN, AND PEGYLATED-HEMATIN
CATALYZED VINYL POLYMERIZATIONS IN WATER', Journal of Macromolecular Science, Part A, 38: 12, 1219 — 1230
To link to this Article: DOI: 10.1081/MA-100108379
URL: http://dx.doi.org/10.1081/MA-100108379

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597274
http://dx.doi.org/10.1081/MA-100108379
http://www.informaworld.com/terms-and-conditions-of-access.pdf


PEROXIDASE, HEMATIN, AND PEGYLATED-
HEMATIN CATALYZED VINYL
POLYMERIZATIONS IN WATER

Amarjit Singh,1 Sucharita Roy,2 Lynne Samuelson,3

Ferdinando Bruno,3 Ramaswamy Nagarajan,2 Jayant Kumar,2

Vijay John,4 and David L. Kaplan1,*

1Department of Chemical & Biological Engineering and
Bioengineering Center, Tufts University, 4 Colby Street, 

Medford, Massachusetts 02155
2Department of Chemistry, Center for Advanced Materials, University

of Massachusetts—Lowell, Lowell, Massachusetts 01854
3Material Science Team, Natick Soldier Center, U.S. Army Soldier and

Biological Chemical Command, Natick, Massachusetts 01760
4Department of Chemical Engineering, Tulane University, New

Orleans, Louisiana 70118

Dedicated to the memory of Professor Sukant K. Tripathy.

ABSTRACT

Horseradish peroxidase-, hematin- and pegylated-hematin mediated polymer-
ization of sodium styrene sulfonate and sodium acrylate in water is reported.
Molecular weight and yields were influenced by the concentrations of hydro-
gen peroxide and initiator, 2,4-pentanedione.  Hematin and pegylated-hematin
were studied in lieu of peroxidase at pH 11.0 and 7.0 in aqueous solution,
respectively.  Polymer with a high molecular weight (Mn = 223,520) was
formed when the pegylated-hematin was used as the catalyst.   The results
demonstrate vinyl polymerizations in an all aqueous process in high yield and
molecular weight catalyzed by peroxidase as well as biomimetic catalysts.
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INTRODUCTION

Polymers of p-styrene sulfonic acid are used in many applications including
ion exchange membranes and resins, [1-5] in biomaterials to influence cell adhe-
sion [6-10] and as inhibitors of virus infections [11-18]. Resins of poly(sodium
acrylate) are used as water absorbent materials for cleaning surfaces, in water and
oil conditioning, personal care products, and disposable materials for medical
applications [19-22 ]. Polymerization of sodium styrene sulfonate and copolymer-
ization of styrene and sodium styrene sulfonate has been reported in organic sol-
vents [23-25], emulsions [26-28], and emulsifier free emulsions [29-30]. Initiator,
temperature, monomer concentration, and solvent have been investigated for their
influence on the reactions. 

In general, these synthetic routes used to synthesize polystyrenes with sul-
fonic acid are based on: a) direct aromatic sulfonation of pre-formed polystyrene
or co-polymers of styrene; b) homopolymerization or co-polymerization of
styrene sulfonic acid by conventional free radical polymerization; or c) chemical
modification of a chloromethyl substituent of styrene by the Strecker reaction.
Sulfonation of polystyrene is accomplished with anhydrous sulfur trioxide, tri-
ethylphosphate complexes of sulfur trioxide and chlorosulfonic acids. Free radical
polymerization is initiated with AIBN-type initiators in solvents such as tetrahy-
drofuran, dimethylformamide and dioxane [31-32]. Styrene sulfonic acid can not
be polymerized by anionic techniques while the sulfonate ester and sulfonamide
are polymerized with organolithium and sodium methoxide initiators [23, 33]. p-
Styrene sulfonate esters of perfume alcohols, herbicides alcohols, and sulfon-
amides have been synthesized using p-styrene sulfonylchloride in the presence of
bases and polymerized by anionic and free radical mechanisms [31-32]. Acrylic
acid esters are polymerized by anionic, cationic, and free radical mechanisms
using chemical initiators in organic solvents [34]. 

Horseradish peroxidase (HRP) is an oxido-reductase isolated from horserad-
ish roots that catalyzes the oxidation of many aromatic compounds, mediated by
hydrogen peroxide and involving a cycle of changes in the oxidation state of an
iron atom located at the catalytic site of enzyme.  The oxidative coupling of a vari-
ety of substrates such as phenols and aromatic amines catalyzed by HRP in the
presence of hydrogen peroxide has been extensively studied in aqueous, nonaque-
ous and interfacial systems [35-52]. The potential of using HRP and other oxi-
dases to catalyze the free radical polymerization of vinyl monomers was first
reported by Derango et al. [53]. The polymers were formed in the presence of a
large excess of hydrogen peroxide [54-55].  More extensive studies have been con-
ducted with respect to the polymerization of acrylamide, methyl methacrylate and
styrene using β-diketones as initiators [56-58]. Recent studies on hematin
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(hydroxyferriprotoporphyrin)-catalyzed polymerization of phenol demonstrated
that the iron in hematin can undergo a cycle of oxido-reductive changes similar to
HRP in the presence of hydrogen peroxide and is a suitable catalyst at pH 11.0
[59]. A major limitation of the enzymatic oxidation of styrene in aqueous solution,
however, has been the insolubility of the styrene monomer which results in phase
separation; the oligomers precipitate at lower molecular weight. 

The objective of the present study was to explore all-aqueous, environmen-
tally compatible, methods to prepare vinyl polymers.  To accomplish this goal, we
report the HRP-, hematin- and pegylated-hematin (PEG-hematin)-mediated poly-
merization of sodium styrene sulfonate and sodium acrylate in water. The PEG-
hematin [60-61] was synthesized to maintain solubility and function at neutral pH,
which was not possible with unmodified hematin due to the limitations in solubil-
ity at neutral pH. The results demonstrate for the first time that these types of
enzymatic and biomimetic enzymatic reactions can be used to polymerize func-
tionalized styrene monomers and other water soluble vinyl monomers like sodium
acrylate in an all aqueous system, resulting in substantial yields and molecular
weight for the vinyl polymers.

MATERIALS AND METHODS

Horseradish peroxidase (Type II, 150-200 units/ mg solid) and hydrogen per-
oxide (30% w/w) were purchased from Sigma Chemical Co., St. Louis, MO. 2,4-
pentanedione, styrene sulfonic acid sodium salt and sodium acrylate were pur-
chased from Aldrich Chemical Co., Milwaukee, WI.  Solvents used were high
performance liquid chromatography grade and purchased from Fisher Scientific
Co., Pittsburgh, PA. Polystyrene sulfonates-Na salt standards were purchased from
American Polymer Standards Corporation, Mentor, Ohio.  Hematin was pur-
chased from Sigma Chemical Co., St. Louis, MO, and PEG-Hematin was pre-
pared chemically by an esterification reaction of the hematin with poly(ethylene
glycol) (MW 10 kD) in the presence of activators N,N’-carbonyldiimidazole and
1,8-diazabicyclo[5.4.0]undec-7-ene in DMF. 

1H NMR spectra were recorded using a Bruker DPX 300 spectrometer.
Chemical shifts in parts per million (ppm) were referenced relative to 3-
(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (0.00 ppm) as internal refer-
ence. Molecular weight was determined by GPC, based on a calibration curve
generated with narrow molecular weight distribution polystyrene sulfonates-Na
salt standards. A Waters 2690 HPLC instrument with Shodex Asahipak GF-7M
HQ with guard column was used with differential refractometer detection.  GPC
data were collected and processed by Millennium GPC software. Aqueous:ace-
tonitrile, 60:40, with 50 mM lithium chloride was used as the mobile phase at a
flow rate of 0.4 mL/min. The polymer samples were dissolved at 1-2 mg/mL and
filtered prior to injection. The run time for each sample was 30 minutes.
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2,4-Pentanedione was distilled under vacuum before use. In a general proce-
dure for polymerization at room temperature, 2.0 mL of water and 4.6 mM (948
mg) of styrene sulfonic acid or acrylic acid sodium salt were mixed and flushed
with nitrogen for 15 minutes. HRP (3.56 × 10-4 mmol, 2400 units, 16 mg) was dis-
solved in 200 mL of water. Hydrogen peroxide, 0.082 mM and 0.082 mM of ini-
tiator were added simultaneously after the addition of enzyme. Polymerization
was conducted for 24 hours with continuous stirring. The reactions with hematin
and PEG-hematin proceeded in a similar manner as with HRP, but with 2.5 or 1.0
mg/ml, of the two biomimetic catalysts, respectively.  The reaction mixture was
poured into 250 mL of methanol, kept overnight and filtered. The polymer precip-
itates were dried under vacuum.

RESULTS AND DISCUSSION

Horseradish peroxidase-mediated polymerization of sodium styrene sul-
fonate was conducted in water with 2,4-pentanedione as reducing substrate and
hydrogen peroxide as oxidant (Figure 1). The possibility that the sodium styrene
sulfonate polymerization did not proceed through the HRP-mediated initiation
was rejected based on preliminary control experiments, since no polymer was
detected in the absence of any one of the components (e.g., enzyme, hydrogen per-
oxide or 2,4-pentanedione). The effect of reaction time on poly(sodium styrene
sulfonate) molecular weight, yield and polydispersity are shown in Table 1. The
molecular weight of poly(sodium styrene sulfonate) increased (Mn 65,882 to
163,280) with reaction time while the polydispersity also increased (2.5 to 3.4),
presumably due to the free radical process. More than 80% of the sodium styrene
sulfonate was converted to poly(sodium styrene sulfonate) in 4 hours. 

The effects of different ratios of initiator 2,4-pentanedione and hydrogen
peroxide in the reaction on yield, molecular weight and polydispersity were deter-
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Figure 1. Schematic of sodium styrene sulfonate polymerization by the different catalysts. HRP
(horseradish peroxidase), 2,4-PD (2,4-pentanedione), H2O2 (hydrogen peroxide).
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mined with time (Figure 2, Table 2).  Experiments were run for 15, 30, 60, 120,
and 240 minutes, and three different ratios of 2,4-pentanedione and hydrogen per-
oxide: a) H2O2 = 0.056 mmol:2,4-pentanedione 0.082 mmol; b) H2O2 = 0.056
mmol:2,4-pentanedione 0.224 mmol; and c) H2O2 = 0.224 mmol:2,4-pentane-
dione 0.082 mmol. When the ratio of 2,4-pentanedione was 1.46 times the molar-
ity of hydrogen peroxide (condition a) a steady increase in molecular weight (from
Mn 37,795 to Mn 90,389, Table 2) and yield (7.0% to 82.2%, Figure 2) was
observed. When the concentration of 2,4-pentanedione was increased four times
(condition b) a decrease in molecular weight (Mn 88,106 to Mn 49,407) and

VINYL POLYMERIZATIONS IN WATER 1223

Table 1. Changes in Poly(Sodium Styrene Sulfonate) Molecular Weight, Polydispersity, and Yield
with Reaction Time:  Reactions Catalyzed by Horseradish Peroxidase

Reaction time
(h) Mn Mw Polydispersity Yield (%)

0.5 65,882 164,509 2.49 14.2
2 88,241 251,194 2.84 76.7
4 99,243 301,323 3.03 81.7
8 104,152 292,633 2.80 81.9

16 163,288 548,242 3.35 82.6

aReaction conditions included 4.6 mmol sodium styrene sulfonate, 0.082 mmol 2,4-pentanedione,
0.082 mmol hydrogen peroxide, water 2.2 mL, and horseradish peroxidase 7-8 mg/mL. Reactions
were run at room temperature. Mn=number average molecular weight, mw=weight average molecu-
lar weight, PD=polydispersity.

Figure 2. Effect of 2,4-pentanedione and hydrogen peroxide concentrations on polymer
[poly(sodium styrene sulfonate)] yield with time. Reaction conditions included 4.6 mmol sodium
styrene sulfonate, water 2.2 mL and horseradish peroxidase, 7-8 mg/mL. Reactions were run at room
temperature under a nitrogen atmosphere. 
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increase in polydispersity (2.3 to 3.8) was observed. The reaction was slow ini-
tially (Figure 2) but yielded the same amount of polymer as in the case of ‘a’. In
comparison, with an increased ratio of hydrogen peroxide (condition c) no product
was detected for the reaction run for 15 or 30 minutes, while the reaction run for
240 minutes with the same amount of hydrogen peroxide yielded polymer with a
56% yield (Mn = 137,098, PD = 2.8, Figure 2).  Formation of higher molecular
weight polymer, when the initiator was 1.46 times the hydrogen peroxide can be
explained on the basis of the mechanistic cycle for HRP-catalyzed polymerization
of acrylamide [56], phenol [62], methyl methacrylate [57], and styrene [58]. One
molecule of hydrogen peroxide produces two catalytically active forms of HRP,
each of which oxidizes the initiator to produce a free radical. The free initiator
radical generates monomer radicals that react with other monomers to produce
polymer. Therefore, based on the mechanism and optimal stoichiometry, one mol-
ecule of hydrogen peroxide would require two molecules of 2,4-pentanedione.
When 2,4-pentanedione was present at four times the level of hydrogen peroxide,
many initiator radicals were formed early in the reaction leading to the formation
of many chains and thus lower molecular weight polymer. The higher concentra-
tion of hydrogen peroxide likely inhibited HRP activity in the short time frames
(up to 30 minutes) leading to low overall yield after 240 minutes.  To evaluate the
influence of hydrogen peroxide and 2,4-pentanedione on molecular weight and
polydispersity of poly(sodium styrene sulfonate), stepwise changes in the ratio of
these two components were studied, with each reaction run for four hrs at room
temperature (Table 3).  The increase in hydrogen peroxide resulted in increased
molecular weight of polymer, while the increase in 2,4-pentanedione resulted in
decreased molecular weight and increased polydispersity (Table 3). The yield was
influenced by the amount of water (Table 4) with the low water content yielding the
most polymer (94%) and the highest water content yielding the lowest yield (58%).  
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Table 2. Effect of Ratio of Hydrogen Peroxide and 2,4-Pentanedione on Mn and Polydispersity
with Respect to Reaction Timea

Ratio of Hydrogen Peroxide and 2,4-Pentanedione in mmol

H2O2:2,4-PD H2O2:2,4-PD H2O2:2,4-PD

Time
0.056:0.082 0.056:0.224 0.224:0.082

(min) Mn PD Mn PD Mn PD

15 37,795 2.31 88,106 2.25 NDb NDb

30 63,870 2.68 121,233 2.18 NDb NDb

60 85,864 2.73 82,981 2.63 65,785 3.21
120 85,543 2.79 64,848 2.82 91,854 2.44
240 90,389 2.70 49,407 3.82 137,098 2.76

aReaction condition included horseradish peroxidase 7-8 mg/mL, water 2.2 mL, sodium styrene sul-
fonate 4.6 mmol, 948 mg. Reactions were run under nitrogen atmosphere.
bNot detected.
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The catalytic cycle of HRP has been thoroughly studied [56-58, 62-63]. The
heme-iron group in HRP interacts with hydrogen peroxide, resulting in changes in
the oxidation state of iron which in turn leads to the polymerization reaction.
Hematin-iron undergoes similar changes in the presence of an oxidizing reagent
and recently hematin-catalyzed polymerization of phenol at pH=11.0 buffer solu-
tion was reported [59]. The low solubility of hematin however, restricts its use at
neutral pH and therefore, PEG-hematin, which is soluble in water at neutral pH
was prepared. Hematin and PEG-Hematin were used to catalyze the polymeriza-
tion of sodium styrene sulfonate in water at pH 11 and 7 (Table 4).  PEG-Hematin
yielded poly(sodium styrene sulfonate) with the highest molecular weight (Mn =
223,520, PD = 3.48) of all the reactions conducted (hematin, PEG-hematin, HRP).

VINYL POLYMERIZATIONS IN WATER 1225

Table 3. Changes in Mn, Polydispersity, and Yield with Different Ratios of Hydrogen Peroxide and
2,4-Pentanedionea

H2O2:2,4-PD
(mmol) Mn Polydispersity Yield (%)

0.056:0.082 80,925 2.99 81.1
0.112:0.082 113,906 3.30 84.8
0.168:0.082 129,861 2.73 77.3
0.224:0.082 137,098 2.76 56.0
0.082:0.056 152,251 3.25 78.4
0.082:0.112 73,909 3.72 84.9
0.082:0.168 55,086 3.34 85.4
0.082:0.224 44,245 4.06 84.9

aReaction conditions included sodium styrene sulfonate 4.6 mmol, 948 mg. Reactions were run for 4
hrs under nitrogen atmosphere.

Table 4. Horseradish Peroxidase, PEG-Hematin, and Hematin-Catalyzed Polymerization of
Sodium Styrene Sulfonate in Water: Effect of Water Content and 2,4-Pentanedione on Reactions

2,4-Pentanedione
Entry Catalyst Time Mn PD (mmol) Yield (%)

1 HRP 24 136,431 2.88 0.082 94.8a

2 HRP 48 76,728 2.66 0.082 88.7b

3 HRP 24 127,588 2.55 0.082 57.6c

4 hematin 38 55,530 2.24 0.164 73.0d

5 PEG-hematin 26 223,520 3.48 0.164 77.8e

6 HRP 20 31,344 7.57 bulk (1 ml) 43.3f

aHorseradish peroxidase 7-8 mg/mL, hydrogen peroxide 0.082 mmol, water 1.2 mL.
bHorseradish peroxidase 7-8 mg/mL, hydrogen peroxide 0.082 mmol, water 2.2 mL.
cHorseradish peroxidase 7-8 mg/mL, hydrogen peroxide 0.082 mmol, water 4.7 mL.
dHematin 2.5 mg/mL, hydrogen peroxide 0.082 mmol, water 2.0 mL.
ePEG-Hematin 1mg/mL, hydrogen peroxide 0.082 mmol, water 2.0 mL.
fHorseradish peroxidase 7-8mg/mL, hydrogen peroxide 0.082 mmol, water 1.0 mL.
Reactions were run under nitrogen atmosphere at 20C.
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In addition, >98% of sodium acrylate was polymerized by hematin at pH 11.0 to
poly(sodium acrylate) at room temperature.

The 1H NMR spectrum of poly(sodium styrene sulfonate) showed two peaks
for aromatic protons with centers at d 6.50 and d 7.50, and methylene protons at d
1.5.  Initiators, 1,3-cyclopentanedione, and tetronic acid influenced the yield of
HRP-catalyzed polystyrene in aqueous organic solvent [58], however, this influ-
ence was not evident in the polymerization of sodium styrene sulfonate.

CONCLUSION

The polymerization of sodium styrene sulfonate and sodium acrylate medi-
ated by horseradish peroxidase, hematin and pegylated-hematin in the presence of
hydrogen peroxide and 2,4-pentanedione was carried out in aqueous medium.
Yields as high as 94% were found and molecular weights varied depending on the
catalyst, with the highest molecular weight polymer produced with the hematins.
The method provides an all aqueous green chemistry approach to vinyl polymer-
izations.
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